RNA Quantification and Illumina Library Generation for RNA Seq

Rania Elbakri
Health Sciences Sequencing Core @ UPMC Children’s Hospital of Pittsburgh-HSSC@CHP
June 9, 2020
www.nextgen.pitt.edu
RNA Sequencing Workflow

Cells → Tissue → BioFluid → RNA Extraction → QC and Quantification → Next Seq Sequencer → Illumina Library
Quantification Methods

• Check RNA Concentration using Qubit Fluorometer

• Check RNA Quality using Fragment Analyzer or Agilent Tape Station
Quantification Methods for RNA seq

- **Accurate reading**: It uses fluorescent dye selective for the bio molecule of interest
- **Incredible sensitivity**: It can be used as low as 10pg/ul

- **Lack of Accuracy**: It only measures purity of the sample and not the accurate concentration
- **Lack of Sensitivity**: It can’t be used with low concentration

Qubit Fluorometer

Nanodrop Ultra Violet Specrophometer

Not recommended for RNA seq
Checking RNA Quality to determine RNA Seq library preparation method

RNA Quality is measured by using

• Agilent instrument (Tape station)

• Fragment Analyzer
How to determine the RNA Quality

- RNA quality is measured by RNA Integrity Number (RIN) between 1 and 10 with 10 being the highest quality samples.
- RNA quality is measured by DV200 (Distribution Value) for highly degraded RNA samples which represents the percentage of RNA fragments that are > 200 nucleotides.
- Some examples in the next slides.
RNA Quality (RIN and DV200)

RIN 10

RIN 3

RIN 7

RIN<3 (DV200=%40)
Library Generation Methods

Fresh RNA
- RIN Score > 7
 - mRNA Seq
 - > 100ng: Illumina Truseq Stranded mRNA 100ng-1ug
 - < 10ng: Takara SMART HT Kit
 - > 100ng: Illumina Truseq Stranded TotalRNA 100ng-1ug
 - < 10ng: Takara SMARTer Stranded Total RNA 250pg-10ng
- RIN Score < 7
 - Total RNA Seq
 - > 100ng: Illumina Truseq Stranded TotalRNA 100ng-1ug
 - < 10ng: Takara SMARTer Stranded Total RNA 250pg-10ng

FFPE RNA
- Total RNA Seq
 - Illumina Truseq stranded TotalRNA 100ng -1ug
- Coding Transcriptome Seq
 - Illumina Truseq RNA Exome 20ng-100ng
TotalRNA-Seq

- rRNA depletion using biotinylated oligos combined with rRNA removal beads

mRNA-Seq

1. PolyA+ RNA captured
2. RNA fragmented and primed
3. First strand cDNA synthesized
4. Second strand cDNA synthesized
5. 3’ ends adenylated and 5’ ends repaired
6. DNA sequencing adapters ligated
7. Ligated fragments PCR amplified
TruSeq Stranded mRNA

Input
- Total RNA 0.1-1ug
- High quality RNA (RIN>7)

Protocol
- Stranded workflow
- Poly A selection
- Single index: 24-plex
- Dual index: 96-plex
- 9hrs hands-on time

Output
- Poly (A) RNA
TruSeq Stranded TotalRNA

Input
- Total RNA 0.1-1ug
- Degraded RNA and FFPE compatible
- Supports:
 - H/M/R
 - Gold (H/M/R)
 - Plant
 - Globin

Protocol
- Stranded workflow
- Ribo-Zero depletion
- Single index: 24-plex
- Dual index: 96-plex
- 8hrs hands-on time

Output
- mRNA & ncRNA
TruSeq RNA Exome

Total RNA Input

1. Total RNA Input
2. 3) First strand cDNA synthesized
3. 4) Second strand cDNA synthesized
4. 5) 3' ends adenylated and 5' ends repaired
5. 6) DNA sequencing adapters ligated
6. 7) Ligated fragments PCR amplified
7. 8) Pool Stranded RNA Seq Libraries in 4-plex
8. 9) Hybridize biotinylated probes to targeted regions
9. 10) Capture using Streptavidin beads
10. 11) Elute from beads
11. Coding RNA Enrichment

Probe
TruSeq RNA Exome

Input
- Low input
- FFPE compatible
- High Quality: 20-40ng
- Low Quality: 100ng (depending on DV200)
- Human

Protocol
- Coding RNA captured via sequence-specific probes
- Stranded workflow
- Single index: 24-plex
- Dual index: 96-plex
- 4-plex pooling pre-enrichment
- 11hrs hands-on time

Output
- Coding Transcriptome
Contact Information

Health Sciences Sequencing Core
https://www.nextgen.pitt.edu/

Amanda Poholek – Director
poholeka@pitt.edu

William MacDonald - Assistant Director
w.a.macdonald@pitt.edu

Rania Elbakri – Next Generation Sequencing
rfe4@pitt.edu

Genomic Research Core
https://www.genetics.pitt.edu/

Janette Lamb – Director
jal18@pitt.edu

Debby Hollingshead – Assistant Director
hollings@pitt.edu

Bryan Thompson – Next Generation Sequencing
brt2@pitt.edu